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Abstract

Time preferences are omnipresent, but they are difficult to measure in the contexts in which

they are applied. In agriculture, farmers’ time preferences drive choices that impact food security,

industry sustainability, and the environment. I structurally estimate the discount rate of farm

operators in Alberta, Canada using a dynamic discrete choice model of crop rotation decisions.

My estimation strategy leverages the finite temporal dependence of expected yields on crop

history and builds on a recent identification result for dynamic discrete choice models. My

estimates suggest a strong present bias, somewhat in line with experimental estimates and in

contrast to common modelling assumptions.
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1 INTRODUCTION

1 Introduction

How individuals and groups of individuals value the future versus the present is a fundamental

question in a wide range of contexts. It is particularly important where long term outcomes or

sustainability are important, however any economic model involving an intertemporal decision

depends on the discount factor. Unfortunately, discounting is difficult to measure and is therefore

simply assumed in many models, often leading to controversial outcomes. Perhaps the most notable

example of this is in climate-economy models, where a change in the discount factor of a few

percentage points can alter the estimated social cost of greenhouse gas emissions by a factor of two

or more. This paper looks at discounting in the context of agricultural practices, where it is key to

food security, long term profitability, local environmental protection, and global climate stewardship.

I present a novel approach to measuring discounting among farm operators, which leverages crop

rotation decisions in a dynamic structural model to estimate context-specific time preferences.

A large literature exists that takes as given that individuals may have non-zero pure rates of time

preference, and attempts to measure them. These estimates vary widely, but often imply significant

present bias (Frederick et al., 2002). In contrast, economic models typically assume that firms have

a zero rate of pure time preference. For example, in dynamic discrete choice models that are widely

used to study firm decisions, the discount factor is often fixed at 5% per year, equal to the long-run

interest rate (e.g., Collard-Wexler, 2013; Dunne et al., 2013). However, there are reasons to question

this assumption. Especially in large firms, intertemporal choices represent a complex aggregation of

individuals’ time preferences, and heterogeneity among individuals further complicates aggregation

(Ebert et al., 2018; Frederick et al., 2002; Gollier & Zeckhauser, 2005). For small firms, aggregation

may be less of a factor, however the distinction between an individual and a firm becomes unclear.

In this paper, I study a particular class of small firms, namely farms, and elicit their discount factor

from a key intertemporal decision. I construct a dynamic discrete choice (henceforth DDC) model of

operational decisions and build on a recent identification result from Abbring and Daljord (2020)

to structurally estimate the discount factor. While this approach requires structural assumptions

regarding the operational environment of the firm, it elicits context-specific values and offers a

transparent identification channel.

My identification strategy leverages decisions regarding crop rotation, which is the practice

of varying the type of crop that is grown on a plot of land from one growing season to the next.

Leaving intervals between growing a particular crop is considered good practice for long-term soil

management and prevents yields from declining over time due to crop-specific diseases, pests, weeds,

and moisture depletion. As such, one season’s crop choice impacts not only that season’s yield and

profit, but also future profit through its impact on crop yield in subsequent seasons. The discount

factor is identified from crop rotation decisions via an exclusion restriction on average expected

profit in different states. The intuition behind this is that choices that shift expected profit between

the present season and the future provide direct information on the farmer’s relative valuation of

present and future. I take the average expected profit difference between planting any two crops as

known and the variance of the profit difference as a nuisance parameter to be estimated.
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2 BACKGROUND

I estimate the discount factor separately for three distinct regions using a rich dataset of plot-level

crop choices derived from satellite imagery. In contrast, data on expected yields and profits is

aggregated at the regional-level. To overcome this limitation, I compute more granular expected

yields using yield penalties from non-ideal crop rotations that are drawn from region-specific crop

rotation experiments in the scientific agriculture literature.

I find evidence of strong present bias, with estimates ranging from 0.33 to 0.8. This suggests

that farm operators may behave more like individuals than canonical firms—contrary to the typical

modeling assumption. This has important policy implications, as the time preferences of farm

operators drive land-use choices that affect key issues such as food security and environmental

sustainability. Additionally, I demonstrate a novel application of Abbring and Daljord’s identification

result for dynamic discrete choice estimation frameworks and employ it with partially aggregate

data. To my knowledge, this is only the second application of dynamic discrete choice models to

estimate discounting outside a consumption choice setting. In doing so, I explore the potential of

this technique for establishing revealed context-specific discount rates in a wide range of settings

and without the requirement for extremely granular data.

2 Background

2.1 Related Literature

This paper relates to three strands of literature in terms of both methodology and topic. First, this

work relates to a vast literature on estimating time preferences as well as more specific strands on

both firm and farmer time preferences. The methodology I use builds on a recent identification

strategy by Abbring and Daljord (2020) and other approaches that use dynamic discrete choice

models to study consumers and firms. Finally, there is a small literature applying discrete choices

model to study land-use, including a model by Scott (2014) that I build from.

Both bottom-up and top-down approaches have been applied to estimate time preferences. An

extensive microeconomics literature exists in which time preferences of individuals are elicited

from lab or field experiments (e.g., Dean and Sautmann, 2014). These estimates may suffer from

questionable external validity due to the artificial lab setting or the typically small stakes involved

and can only be applied to individuals, not groups. At the other end of the spectrum, aggregate

discount factors for entire populations are often estimated from macroeconomic models using the

Euler equation (e.g. Cagetti, 2003; Gourinchas and Parker, 2002). This approach abstracts from the

complex set of interactions through which individual or investor preferences manifest themselves

in firm behaviour. Perhaps not surprisingly, these different approaches elicit strikingly different

estimates of discount rates, as has been thoroughly documented by Frederick et al. (2002).

The literature that directly focuses on firm discounting is sparse. A recent strand of management

literature studies short-termism but does not directly estimate discounting (e.g., Anderson et al.,

2012). One exception is Harris and Siebert (2017), who estimate discount factors for individual

semiconductor firms using a structural model of mergers. Their estimates range as low as 0.73, with

2



2.2 Agriculture and Crop Rotations in Canada 2 BACKGROUND

the bulk of firms in the range 0.93-0.96.

A handful of authors has looked at the discount factors of farmers. Duquette et al. (2012),

Hermann et al. (2015), and Harrison et al. (2002) use experimental evidence that elicits the personal

discount factors of farmers. All obtain values in a range from 0.7 to 0.78. Hermann et al. find a weak

correlation between discount rate and farm size. Structural estimates include Lence (2000)1 and

Abdulkadri and Langemeier (2000), which both use consumption and investment data for farmers to

estimate discount factors directly from the Euler equation. Their estimates vary from below 0.95 to

above 0.99.

Recently, a number of authors have estimated consumer discount factors using dynamic discrete

choice models (e.g. De Groote and Verboven, 2019; Einav et al., 2015; Rossi, 2018). To the best of

my knowledge, Bollinger (2015) is the only study that estimates the discount factor of firms in a

discrete choice setting. This is in the context of green technology adoption in the garment cleaning

industry and uses exogenously changing environmental policies that affect future but not current

profits to identify the discount factor. He finds a discount factor of 0.94.

A number of authors have applied discrete choice models to land-use choices, however this is

typically to investigate land conversion in and out of agriculture or between cash crops and pasture.

Claassen and Tegene (1999) is an early example of a static discrete choice setup for land-use choices,

while Lubowski et al. (2008) is an example of a dynamic treatment. Of particular note is Scott

(2014), as I draw from his model setup in the current work. He develops a dynamic discrete choice

model to investigate farm operator land-use decisions in the United States. His focus is on an

alternative estimation technique, and he does not estimate the discount factor. Wu et al. (2004)

applies a discrete choice model to crop and tillage decisions, but in a static model. The present

work is the first to elicit time preferences from crop rotation decision using structural modeling and

estimation.

2.2 Agriculture and Crop Rotations in Canada

Agriculture is a key industry in many parts of Canada, particularly in the west-central Prairie region,

comprised of the provinces of Alberta, Saskatchewan, and Manitoba. This region constitutes one of

the world’s major producers and exporters of grains and oilseeds. The industry exhibits a number of

features that make it amenable to modeling with the single-agent dynamic discrete choice framework.

The agricultural industry in Canada features competitive markets with a large number of small

firms. As of 2012, when the Canadian Wheat Board’s Single Desk marketing power ended, all major

crops are sold in an open, often global market. The 2016 census reported 13,451 oilseed and grain

farms (Statistics Canada, 2020c). The average land area of a farm is 1,237 acres (Statistics Canada,

2020b), however a single field is typically around 160 acres, so an average a farm consists of less

than ten fields. Profit margins are thin, with the median income of families with oilseed and grain

farms around $80,865 in 2010 (Statistics Canada, 2016).

Farms in Canada are primarily sole proprietorships (52%), with only 2% classified as non-family

1The estimates in Lence (2000) likely suffer from small sample bias.
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corporations and the remainder being partnerships or family corporations.2 This adds another

dimension to the question of time preferences in this particular context, as it is unclear whether to

expect their behaviour to more closely resemble a canonical firm, discounting at the interest rate, or

an individual, who might tend to be more present biased. As in many developed nations, there is

a trend toward corporatization (Magnan, 2015), which is controversial in part due to how it may

affect environmental stewardship, a topic closely related to time preferences.

Farm operators face a discrete and relatively small set of viable crops from which to choose. The

most commonly grown crops in Alberta are wheat, canola, barley, and field peas. The per-farm area

of land seeded for just wheat and canola was 602 acres and 559 acres in 2020 (Statistics Canada,

2020b). Crop decisions are made roughly simultaneously due to climatic constraints. Canada’s

climate permits a single growing season, so apart from winter wheat, which makes up less than 3%

of all wheat seeded in Alberta,3 crop decisions are synchronized in late winter.

Importantly for this paper, crop decisions have a strong intertemporal aspect. Diverse rotations

lead to increased long-term profitability due to the reduction of pests, diseases, and weeds and the

retention of residual nutrients and moisture (Zentner et al., 2002). For example, wheat has been

shown to benefit from increased soil available nitrogen from peas and reduced weeds after canola

(Gill, 2018), while canola is particularly susceptible to a disease known as Blackleg in continuous

cropping (Harker et al., 2018). With the adoption of reduced tillage practices, crop-specific diseases

and weeds have become an even stronger motivation for crop rotation (Kutcher et al., 2011).

Crop rotation is currently a particularly salient issue for canola given its recent rise in popularity.

The amount of canola seeded each year has grown enormously since the early 2000s and has come

to rival the traditional mainstay wheat crop in many regions. Its high profitability puts pressure

on farmers to shorten crop rotations despite the known yield impacts. Harker et al. (2018) reports

that canola was grown every second year in 40% of the Canadian Prairies in 2015, while 5% was

continuous-cropped.

3 Model

I model farm operator crop choices using a stationary single-agent dynamic discrete choice model

(e.g. Rust (1994)). In accordance with the fundamental independence assumption required of this

class of models, I assume that a single farmer owns a single field, and therefore the terms field, farm,

farmer, farm operator, and agent are used interchangeably. Fields within a region r are assumed to

be of homogeneous type; they may differ due to their crop history and idiosyncratic shocks but are

similar in every other sense, such as size, soil quality and expected weather. Since I analyze regions

independently, I omit the r subscript throughout the descriptions of model setup and identification.

As per the typical growing season in the Canadian Prairies, farmers make crop decisions once per

year. Time is discrete with an infinite horizon. Farm operators act to maximize expected discounted

2Figures calculated based on data from Statistics Canada (2020d)
3Calculated based on data for 2011-2019 from Statistics Canada (2020a)
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payoffs, which are determined entirely by and are therefore identical to expected profits. Formally, I

specify the single-period payoff for field i at the time of planting as:

U(j, xit, νit) = π(j, xit) + νjit, (1)

where the crop choice is j ∈ J = {0, 1, ..., J − 1} where J is the number of crop choices considered.

xit denotes the vector of observable state variables, to be further defined below. The error term νjit

represents idiosyncratic variations that are assumed to be distributed identically and independently

across fields and time. νjit is observed by the agent but not the econometrician. It allows for

non-persistent heterogeneity in expected profits and is unrelated to the agent’s uncertainty in payoffs.

π(j, xit) is the average expected profit from planting crop j in state xit.

This payoff specification embodies a number of assumptions that are typical of dynamic discrete

choice models. First, it implies farm operators are risk neutral. While some studies emphasize the

importance of uncertainty and risk aversion for farmers (e.g. Hermann et al. (2015) and Lence

(2000)), I choose to model them as one would typically model firms and to look for a departure from

that model in terms of the discount rate. Risk neutrality is a typical assumption in the discrete choice

literature and is likely a reasonable approximation given the typical magnitude of the difference in

expected profit between crop choices.4 Also implicit in the specification is that payoffs are additively

separable in the observable component π(j, xit) and unobservable component νjit.

The standard assumption of independent error terms implies that unobserved differences between

fields are independent. This precludes economies of scale, although these likely play a role in farm

operators’ actual decisions, as evidenced by the current trend of increasing farm size. Identically

distributed error terms across individuals and time implies there is no persistence in the unobservable

component of payoffs. I assume a Gumbel distribution with mean zero and scale parameter α. In

imposing a common scale parameter, I further assume the error terms are identically distributed

across choices.5

I assume the discount rate β is constant over time and common across farm operators. Revenue

and costs are not discounted within periods, for example between planting and harvest. Given

stationarity, the Bellman equation for this dynamic choice problem can be written as follows. I omit

the i subscripts for the remainder of this section for brevity, denoting period t+ 1 with a prime.

V (x, νj) = max
j∈J

{
U(j, x, νj) + β

∫
V (x′, ν ′j′)dF (x′, ν ′j′ | j, x, νj)

}
, (2)

with V (x, νj) being the optimal decision rule and F (·) the Markov transition distribution function

describing the farm operator’s belief about future states. Due to the additively separable payoff

specification, we can write the choice specific value function as v(j, x, νj) = v(j, x) + νj . The

choice-specific value function prior to the realization of the idiosyncratic shock, which I refer to as

the expected choice-specific value function, is therefore:

4It is unclear whether the risk aversion parameter would be identified in a specification with absolute risk aversion.
Allowing for relative risk aversion would require complete farm income data.

5It may be possible to relax this assumption in subsequent work. This is explained further in Section 4.
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3.1 State Space 3 MODEL

v(j, x) = π(j, x) + β

∫
V (x′, ν ′j′)dF (x′, ν ′j′ | j, x, νj). (3)

Taking the future state to be independent of the current error term, conditional on the current

state and choice, and assuming the set of states X to be discrete and finite with number of states X,

we can rewrite the expected choice-specific value function as:

v(j, x) = π(j, x) + β
∑
x′

Eν′

[
max
j′∈J

{
v(j′, x′) + ν ′j′

}]
q(x′ | j, x). (4)

3.1 State Space

I discuss two different state space definitions. The first is a larger, more intuitive space, which

explicitly incorporates the effects declining yield with shorter crop break intervals. The second

compresses the state space into a version more suitable for estimation with a short time series of

aggregate data.

The first state space consists of the individual field state kit and the regional market state ωt:

x̃it = (kit, ωt) (5)

The field state is defined as the crop history of a given field. Assuming that the field state

displays a finite dependence of two years (i.e. crop history more than 2 years prior is irrelevant to

current expected outcomes), we can write it as

kit = (k1it, k
2
it), (6)

where k1it = ji,t−1 and k2it = ji,t−2 are the crops planted on field i in the previous year and two years

prior, respectively. As such, the evolution of the field state is deterministic. Most crop rotation

studies do not examine the effects of crop rotation beyond three year rotations (corresponding to two

year dependence), as the effects are generally considered to be most pronounced over the first two

years.6 The field state subsumes all disease, pest, weed, and soil moisture effects of crop rotations.

I define the market state as the set of expected benchmark profits for each crop choice (indicated

by superscript):7

ωt = (π∗0
t , π∗1

t , ..., π∗J−1
t ). (7)

Expected benchmark profits are defined as the expected profits in the absence of any decreased

yield due to insufficient crop break intervals. The market state is assumed to evolve via a stationary

Markov process.

6See for example Harker et al. (2015) and Kutcher et al. (2013). Wilcox (2012) is one of the few sources that show
longer dependence, but is not based on an experimental setup.

7An alternative, more granular market state definition would incorporate the components of expected profit (prices,
benchmark yields, and costs) separately. However, this would lead to a very large state space with thousands of states.
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4 IDENTIFYING THE DISCOUNT FACTOR

This specification embodies a few notable assumptions. First, weather is not included as a state

variable. I assume that farmers take weather as unpredictable, meaning that the weather at the time

of planting is not expected to be predictive of the weather throughout the growing season. Related

to this, I account for soil moisture effects only through the crop rotation effect embodied in the field

state variable. As will be shown formally in Section 5.2, input costs do not depend on the individual

field state. For example, I abstract from the potential use of more pesticide in continuous cropping.

I further assume that crop rotation has the same effect on yields in all regions.

In this state specification, the future market state is assumed to be independent of the current

choice. This is consistent with the competitive nature of commodity markets, as the vast majority

of farms are small firms subject to globally determined prices.

3.1.1 Compressing the State Space

The state space definition outlined above results in a very large state space, even with an extremely

simple representation of choices and profit levels.8 Given the limited length of the time series data

available, it is unlikely to observe all the relevant states. Therefore, I propose to compress the state

space to the vector of individual expected profits:

xit = (π0
it, π

1
it, ..., π

J−1
it ) (8)

Individual expected profits combine the individual field state and regional market state into a

single individual state variable (per choice). This simplification collapses the two-period dependence

in the first specification to a one-period dependence9 and makes the crop rotation effect less explicit.

However, the benefit is that the state space is greatly reduced,10 which allows for more transitions

between states to be observed, making estimation more feasible.

4 Identifying the Discount Factor

I estimate the discount factor by building slightly on the identification result from Abbring and

Daljord (2020). This result allows for estimation of the discount factor from choice probabilities,

expected profits, and state transition probabilities. It employs an exclusion restriction on primitive

utility, in this case average expected profit. In the generalized specification presented by Abbring

and Daljord, the difference between the expected profits for two choice-state combinations is taken

as known and the variance of the idiosyncratic error is normalized to one. This is equivalent to

knowing the expected profit difference scaled by the variance of the idiosyncratic error term. With a

full panel dataset this quantity could be estimated. I present a derivation in which only the average

expected profit difference is known, and the variance is a parameter to be estimated. In the following,

8For example, with three crop choices and two levels (high/low) for expected profits there are 72 possible states.
9Note that I employ the two-period state dependence in the synthesis of expected yields, as described in Section 5.

10The example with three crop choices and two expected profit bins is reduced to eight possible states.
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4 IDENTIFYING THE DISCOUNT FACTOR

I will follow closely Abbring and Daljord, but without normalizing the error variance. I omit i, t,

and r subscripts for brevity.

First, we can rewrite (4) as

v(j, x) = π(j, x) + β
∑
x′

Eν′
[
m(x′) + v(j0, x

′)
]
q(x′ | j, x), (9)

where m(x′) = Eν′

[
maxj′∈J

{
v(j′, x′)− v(j0, x

′) + ν ′j′
}]

is the expected “excess” surplus of choice

j over a reference choice j0. Given the assumption that the error terms are drawn independently

from a Gumbel distribution with mean zero and scale parameter α, we have:11

Eν′

[
max
j′∈J

{
v(j′, x′)− v(j0, x

′) + ν ′j′
}]

= α ln

∑
j′∈J

exp

(
v(j′, x′)− v(j0, x

′)

α

) . (10)

Similarly, we can derive a form of the Hotz-Miller inversion (Hotz & Miller, 1993) where the

variance is not normalized. This equation relates the difference in value functions to the choice

probabilities p(j, x):12

α ln

(
p(j, x)

p(j0, x)

)
= v(j, x)− v(j0, x), j ∈ J /{j0}. (11)

Combining (10) and (11), we have, simply:

m(x′) = −α ln(p(j0, x
′)). (12)

It is useful to write (9) in matrix form. I move the choice to a subscript in vector forms for

brevity. Let vj , pj , πj , and m be X × 1 vectors stacking v(j, x), p(j, x), π(j, x), and m(x) for all

states x ∈ X . Vectors for the reference choice j0 are indicated by subscript 0, e.g. v0. Let Qj be the

X ×X matrix of transition probabilities where rows correspond to x and columns correspond to x′.

Q(j, x) denotes a row of the transition matrix.

v(j, x) = π(j, x) + βQ(j, x)[m+ v0] (13)

Reproducing the derivation in Abbring and Daljord (2020) for exposition, we can assemble

instances of this equation into a fully matrix representation, difference the corresponding equation

for the reference choice, and apply (11):

vj = πj + βQj [m+ v0]

vj − v0 = πj − π0 + β[Qj −Q0][m+ v0]

α(ln(pj)− ln(p0)) = πj − π0 + β[Qj −Q0][m+ v0].

(14)

11see Appendix A.1 for derivation.
12See Appendix A.2 for derivation.
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Next, note that the first equation above also holds for j = j0. Solving this instance for v0 gives:

v0 = [I − βQ0]
−1[π0 + βQ0m]. (15)

Substituting this and the vector form of (12) into (14) and simplifying, we have:

α(ln(pj)− ln(p0)) = πj − π0 + β[Qj −Q0][I − βQ0]
−1[π0 − α lnp0]. (16)

Note that we have a set of equations in two unknowns (α and β), as the choice probabilities,

average expected profits, and transition probabilities can all be estimated from the data. We

could use this set of equations directly, however I difference this equation once again to make the

result robust to a constant (across states) shift in the reference payoff π0.
13 Abbring and Daljord’s

exclusion restriction enumerates the valid choice-state combinations that we can use to assemble a

set of equations to estimate β.14 Take x1, x2 ∈ X , j ∈ J /{j0}, and l ∈ J such that either l ̸= j,

x1 ̸= x2, or both. Given that Q0 exhibits single action finite dependence15, I posit that β is uniquely

identified by a set of two or more equations of the following form:16

α [ln (p(j, x1)/p(j0, x1))− ln (p(l, x2)/p(j0, x2))]− [π(j, x1)− π(j0, x1)− π(l, x2) + π(j0, x2)] =

β[Q(j, x1)−Q(j0, x1)−Q(l, x2) +Q(j0, x2)][I − βQ0]
−1[π0 − α lnp0].

(17)

The scale parameter α complicates Abbring and Daljord’s set identification result. However,

since α and β do not enter the equation symmetrically, they are likely to be locally identified using

a set of equations. The number of possible discount factors satisfying the equation is equal to the

number of past periods that are required to determine the state transition probabilities for a given

choice. Given the compressed state space specification, I expect point identification of the discount

factor.

5 Data

The data required for estimation includes crop choice histories and state-specific expected profits.

My approach involves combining separate datasets for each of these to construct a ‘pseudo’ panel

dataset. I use the term ‘pseudo’ because the dataset for state-specific expected profits is synthesized

from cost, price, and yield data that represent averages by year and region. To obtain state-specific

expected profits, I adjust average yields by a factor based on the crop rotation history, where this

factor is taken from the scientific crop rotation literature. This process is further explained below.

I focus on non-irrigated agricultural land in Alberta and choose regions to be soil zones to match

13See Appendix of Abbring and Daljord (2020).
14Note that the scale parameter α is a nuisance parameter that is not of direct interest here.
15See Abbring and Daljord (2020) for details and Arcidiacono and Miller (2020) for a general discussion.
16Exact single finite action dependence is not possible with estimated transition matrices, however local identification

can be verified numerically.
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5.1 Crop Choice Histories 5 DATA

Figure 1: Sample of field crop assignment. The green grid demarcates quarter sections and the
background color indicates the crop at 30 m resolution. The color of each circle indicates the assigned
field crop as determined by the majority of pixels in each field.

the data for average payoffs. Fields within a soil zone typically have similar soil type and weather

patterns, resulting in similar cost structure and crop choices. The data is most complete for the

Brown, Dark Brown, and Black soil zones.

5.1 Crop Choice Histories

I construct crop choice histories for each quarter section of agricultural land in Alberta for the years

2011 to 2019 from the Annual Crop Inventory (Agriculture and Agri-Food Canada, 2019). This

is a set of annual crop inventory maps published by Agriculture and Agri-Food Canada that are

constructed from satellite imagery to provide crop classification with an accuracy of at least 85% at

a resolution of 30 m for the entire Prairie Region (Fisette et al., 2014). I assign a crop choice to

each quarter section (as defined by the Alberta Township System) for each year as the majority

pixel value within the area. Figure 1 shows a small sample for one year, with the resulting field crop

assignment indicated by the color of the circle overlaid on each quarter section. I exclude from the

dataset any quarter section which was employed in a non-agricultural land-use or a pasture/forage

in any year. Land is typically only used for pasture/forage if it is of marginal quality and unsuitable

for cash crops, which represents a different choice problem than the one of interest here. Further

simplification of crop classification is discussed in Section 5.2.4.

The soil zone for each quarter section is assigned using the Prairie Soil Zones of Canada 17 and

irrigation zones are identified based on an irrigation district map obtained from the Irrigation &

Farm Water Branch of the Government of Alberta. The resulting region definitions are shown in

Figure 2

17Map file obtained from Agriculture and Agri-Food Canada (2018).
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5.2 Payoffs 5 DATA

Grande	Prairie

Medicine	Hat
Lethbridge

Edmonton

Cold	Lake

Red	Deer

Calgary

Black
Brown
Dark Brown
Dark Grey
Grey
Irrigated

Figure 2: Regions as defined by soil zones and irrigation districts. Base map from the Government
of Alberta.

5.2 Payoffs

Field state-specific average expected profits for crop choice j in region r and year t with field state k

are constructed from annual soil zone-specific averages of prices prt, yields yrt and costs crt:
18

πrtk(j) = prt(j) ∗ y (j, k, yrt(j))− crt(j). (18)

The function y(·) maps average expected yield to field state-specific expected yield and is described

in Section 5.2.2.

5.2.1 Average Prices, Yields, and Costs

I present results from two alternative datasets for average annual prices, yields, and costs by soil

zone, both obtained from reports published by the Economics and Competitiveness Branch of the

Government of Alberta. Agriprofit$ Cropping Alternatives is an annual forecast published early in

the year as a tool to help farmers make crop decisions (Agriculture and Forestry Alberta, 2014-2020).

These forecasts are based on prior years’ survey data, market trends, and expert opinion. It should

be noted that the methodology is not entirely consistent over time. For example, in some years

regional differences in prices only reflect differences in crop quality, but in others, they also include

actual price differences between regions. This does not pose a problem if one chooses to interpret

these values as average expectations in the sense of average beliefs about future payoffs rather than

statistical expectations, which is plausible as they are openly available publications from an official,

18The assumption of competitive markets implies that there is no covariance term.
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Figure 3: Profits time series from Agriprofit$ Cropping Alternatives. Adjusted to 2014 dollars.

central source. Publications span the years 2014 to 2020. The values ‘Expected Yield per Acre’ and

‘Expected Market Price’ are extracted from the PDF document tables for the averages of price and

yield. To account for the mix of owned and rented land, I calculate capital costs based on ‘Total

Capital Costs’ less half of ‘Crop Share/Cash Rent’. Total costs are the sum of this value and ‘Total

Direct Expense.’ The average expected profits calculated from these values are plotted in Figure 3

(see Appendix A.3 for the price, yield, and cost series).

Agriprofit$ Cost and Return Benchmarks for Crops and Forages is an end of season summary

based on voluntary survey data (Agriculture and Forestry Alberta, 2004-2018). These reports span

2004 to 2019, with the exception of 2014. Sample sizes are generally not reported. I select the

reported data average over both owned and rented land under the assumption that the sample is

representative of actual tenure rates and because the disaggregated data is less complete. The values

‘Yield per Acre’, ‘Expected Market Price’, and ‘Total Production Cost’ are extracted from the PDF

document tables for the averages of price, yield, and costs, respectively. The data also includes other

crop-specific income, most importantly from crop insurance, which I add in calculating profits. The

average expected profits calculated from these values are plotted in Figure 4.19 This dataset is much

less consistent in the crop varieties that are reported from year to year (see Table 3), but provides a

longer series for the Black soil zone. Aggregation of crop varieties is discussed in Section 5.2.4.

5.2.2 State-Specific Expected Yield

Following crop rotation studies, I define state-specific expected yield as:

y (j, k, yrt(j)) = γk(j) ∗ y∗(j, yrt(j), Nkrt(j)), (19)

19See Appendix A.3 for the price, yield, and cost series.
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Figure 4: Profits time series from Agriprofit$ Cost and Return Benchmarks for the Black soil region.
Adjusted to 2014 dollars.

Crop
Crop Break Interval

References
0 1 2

Wheat 0.11 0.00 0.00 1,2
Canola 0.18 0.02 0.00 1,3,4,5,6
Barley 0.16 0.07 0.00 2,5,7
Peas 0.14 0.11 0.00 2,9

Table 1: Yield penalties compiled from the crop rotation literature. References: 1-Gill (2018),
2-Wilcox (2012), 3-Harker et al. (2015), 4-Harker et al. (2018), 5-Williams et al. (2014), 6-Dosdall
et al. (2012), 7-Arshad et al. (1999), 8-Wright (1990), 9-Nayyar et al. (2009)

where γk(j) is a yield penalty based on values from crop rotation studies and y∗(·) is a benchmark

yield in which no crop history effects are present, calculated from average yields yrt and field-state

populations Nkrt. This is further explained below.

The yield penalties are provided in Table 1. These values are compiled via a thorough literature

review of relatively recent crop rotation studies in all soil zones on the Canadian Prairies. Each

value represents an average of reported values from at least two different sources for each crop. Due

to limited data availability, the expected yield penalty for a given crop is calculated based on the

last time that crop was grown (i.e. crop break interval), so each γ is not unique for every field state

k. For example, γ1,1(j) = γ1,2(j) because Crop 1 was grown in the preceding year in both states.

This simplification is consistent with many scientific analyses (e.g. Wilcox (2012)), as the literature

identifies disease and pests as the primary cause of decreasing yields, many of which are specific to

the crop categories of interest here (Harker et al., 2015).

To obtain benchmark yields from the available average yield data, I assume that the averages

are calculated from a sample with a field state distribution that is similar to that observed in the

Crop Inventory data. This allows the benchmark yields to be calculated as follows:20

20Derivation in Appendix A.4.
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5.2 Payoffs 5 DATA

y∗(j, yrt(j), Nkrt(j)) =
yrt(j)∑

k
Nkrt(j)∑
k Nkrt(j)

∗ γk(j)
. (20)

Because the datasets do not cover precisely the same years, I use the average frequency of each

field state over all years in the Crop Inventory, rather than the yearly field state frequencies.

5.2.3 Synthesizing Expected Profits

In order to determine expected profits for each crop choice in each region, year, and field-state,

I use the deterministic nature of field state transitions within the model. For example, a field in

which Crop 1 was grown the previous year and Crop 2 was grown the year before is in field-state

(1,2). Choosing Crop 3 in the current year will transition the field to state (3,1). Therefore, I can

construct a synthetic population for estimating expected profits, which consists of one field in each

possible field state21 for each year and region. The expected profit of each possible choice for each

field in this set is calculated using (18). For transition probabilities, I follow a similar process, but

taking the Cartesian product of current field-states and current crop choices to obtain a two-period

synthetic dataset of expected profits.

5.2.4 Crop Categorization

Because crops are classified with different degrees of precision between datasets, some judgment

must be used to harmonize the data. For example, the Annual Crop Inventory distinguishes only

between spring wheat and winter wheat, while the other sources have data on specific varieties, such

as CWRS and durum. The categories in the different datasets which have reasonably complete data

are listed in Table 3.22 Furthermore, in order to maintain a tractable model I limit the choice set

to three crops. Therefore, some data must be either aggregated or excluded. To begin, I consider

payoff data for only wheat, canola, barley, and peas as they are clearly the most relevant crops in all

soil zones, as shown in Figure 5.23

As it is unclear a priori whether it is more appropriate to excluded or aggregate different crop

types and varieties, I present results for a number of variants, described briefly in Table 2.24 Where

data is aggregated over multiple crops, I take averages to calculate yield penalties, prices, yields,

and costs. I aggregate Liberty Link and Roundup Ready canola because they are simply different

proprietary varieties with distinct herbicide-compatibilities. The distinction between feed barley and

malt barley is often due simply to resulting crop quality rather the seed variety planted (O’Donovan

et al., 2014). I drop CPS wheat as it is a type of spring wheat. Spring wheat comprised on average

86% of all wheat grown between 2011 and 2019 in Alberta.25 I present variants with and without

21There are nine states in a specification with a two-year crop history and three crop choices.
22I exclude winter wheat from the Wheat category as it is a relatively minor crop and it’s growing season is different

from other crops.
23The data for lentils in the Brown soil zone is not consistent over years.
24See Appendix A.5 for a detailed description of the variants considered.
25Calculated based on data for 2011-2019 from Statistics Canada (2020a).
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Figure 5: Frequencies of most common crops by soil zone and year. Crops excluded if less than 1%
of most common crop in soil zone.

durum wheat.

Variant Description

Preferred Aggregates data for both barley and peas as Other category.
All Crops Assigns all fields not labeled as Wheat or Canola to Other category.
Top 3 Crops Uses only data from third most common crop in region for Other category.
Top 3, All Same as Top 3 Crops, but assigns all fields not labeled as Wheat or Canola to Other.
3rd Penalty Uses yield penalty from third most common crop for Other category.
Durum Includes durum wheat (only for Brown and Dark Brown soil regions).

Table 2: Brief descriptions of variants considered.

5.2.5 Discretization of Profits

In order to construct discrete states, expected profit values are discretized. Due to the limited

amount of data available, I bin profit values into just two levels: high (H) and low (L). I define bins

separately for each crop choice, with the cutoff as the median value of the one-period synthesized

profits dataset over all years and field states.26

26The median potentially creates more transitions between states than the mean.
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5.2 Payoffs 5 DATA

Soil Zone Crop Inventory
Cropping

Alternatives
Cost and Return

Benchmarks

2011-2019 2014-2020 2004-2013,2015-2019

Black

Spring Wheat
Spring Wheat,
CPS Wheat

Spring Wheat,
CPS Wheat (2015, 2017, 2018)

Canola/Rapeseed Argentine HT Canola
Liberty Link Canola,
Roundup Ready Canola

Barley
Feed Barley,
Malt Barley

Feed Barley,
Malt Barley (2015, 2017)

Peas Field Peas Field Peas (2006)

Dark
Brown

Spring Wheat
Spring Wheat,
CPS Wheat,
Durum Wheat

Spring Wheat (2016, 2017)

Canola/Rapeseed Argentine HT Canola

Barley
Feed Barley,
Malt Barley

Peas Field Peas

Brown

Spring Wheat
Spring Wheat,
CPS Wheat,
Durum Wheat

Spring Wheat (2013)

Canola/Rapeseed Argentine HT Canola

Barley
Feed Barley,
Malt Barley

Peas Field Peas

Lentils
Lentils*,
Red Lentils*

Table 3: Crop classifications in different datasets. Years where observations are missing are in
parentheses. Crop types or varieties with more than 3 years missing are excluded. *Reported data
switches from Lentils to Red Lentils in 2016.
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6 ESTIMATION

6 Estimation

Estimation consists of two stages. In the first, expected profits, choice probabilities, and transition

probabilities are estimated separately. In the second, these estimates are used to determine the

implied discount factor. Errors are estimated by applying the delta method at various stages. Each

region is estimated separately.

Expected profits are estimated from the synthesized dataset described in Section 5.2.3 by

averaging over all calculated profit values corresponding to each choice-state combination. The

number of observations used to calculate each estimate varies based on the mapping from the original

state specification to the compressed state specification. One implication of this is that, somewhat

counter-intuitively, the expected profit of a given choice is not necessarily equal for two states with

the same profit level for that choice. For example, π(j0, LLL) is not in general equal to π(j0, LLH)

even though the profit state level for choice j0 is L in both cases. A second implication of using a

synthesized dataset is that the true variances and covariances of these profit estimates are not known.

In order to nevertheless calculate an indication of the true standard errors, I assume zero covariance

between estimates and calculate the variance of profit values in each state-choice combination. In

order to report the most conservative possible estimates, I attribute the maximum variance to all

estimates. This further ensures that weights in the second stage estimation are not skewed by this

less than ideal error estimate.

To estimate choice probabilities, compressed states x are first assigned to the Crop Inventory

data by merging it with the synthesized expected profits dataset on region, year, and field state.

Choice probabilities are then estimated in two steps to allow for the calculation of standard errors.

First, the unconditional state probabilities and joint state-choice probabilities are estimated as

averages of indicator variables. The conditional choice probabilities are then calculated as the joint

probability divided by the state probability. Standard errors are calculated using the delta method,

where observations are assumed to be independent and identically distributed so that the covariance

matrix of the unconditional probabilities is given by the covariance of the indicator variables divided

by the number of observations.

Transition probabilities and errors are calculated in an analogous fashion to the choice probabilities,

but using the synthesized dataset described in Section 5.2.3. As such, transition probabilities are

based on a combination of the modeled deterministic individual field state transitions and the

empirical market state evolution.27 For the Cost and Return Benchmarks dataset, I treat the year

2015 as if it followed immediately after 2013 because 2014 is missing from the dataset.

For all first stage estimates, any states that are not observed or which have only observations

into, but not out of the state (i.e. are observed only in the last year of the time series) are excluded.

The second stage estimation of β is achieved with a two-step efficient minimum distance estimator.

The residual of each equation is calculated as:

27They are not based on the crop choice observations as this would inaccurately weight the transition probabilities
based on the number of fields in each individual profit state.
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7 RESULTS

εr,(l,j,j0,x1,x2)(α, β) = α (ln(p(j, x1)/p(j0, x1)− ln(p(l, x2)/p(j0, x2))−

(π(j, x1)− π(j0, x1)− π(l, x2) + π(j0, x2))−

β[Qj(x1)−Q0(x1)−Ql(x2) +Q0(x2)]× [I − βQ0]
−1[π0 − α lnp0].

(21)

Let θr = (αr, βr) denote the parameters to be estimated and let ηr denote the vector of expected

profits, choice probabilities and transition probabilities, which is estimated in the first stage. θ̂ is

estimated with weight matrix W by:

θ̂ = arg min
θ

εr(θr, η̂r)
′Wεr(θr, η̂r), (22)

where εr(θr, η̂r) is the column vector of residuals from (21) using all valid combinations of l, j, j0 ∈ J
and x1, x2 ∈ X , as discussed in Section 4. This includes all possible assignments of the reference

choice j0 and all numerically unique permutations. For example, setting j = Canola, x1 = (HHH)

and l = Other, x2 = (HHL) is not numerically different from j = Other, x1 = (HHL) and

l = Canola, x2 = (HHH) so only one of these is included in the estimation. This results in 744

equations per region if all possible states are observed. In the first step I use an identity weight

matrix and in the second I use the efficient weight matrix
(
∇ηεr(θ̂r, η̂r)Ω̂∇ηεr(θ̂r, η̂r)

′
)−1

, where Ω̂

is the estimated covariance matrix for η.28 Standard errors are calculated using the delta method.29

It should be stressed that due to the use of aggregate data for profits, the error estimates are a best

attempt to indicate the degree of uncertainty, but may be an underestimate.

7 Results

This section first discusses my preferred estimate in detail, followed by comparisons with the other

variants considered. My preferred estimate uses the Cropping Alternatives forecast values and

aggregates data for barley and peas in the Other category, excluding fields planted with any other

crop. I prefer this dataset to the actual realized data from the Cost and Return Benchmarks dataset

as I consider it to more accurately reflect farmers’ expectations, which is the important parameter

in determining their decisions. In addition, the Cropping Alternatives data does not suffer from

missing observations in any year for any of the crops considered. In comparison with other variants

using the same data, I prefer including as many other crops as possible in the Other category as it

more accurately represents the potential payoffs from planting an alternative crop to either wheat or

canola.

28I use the Moore-Penrose inverse to ensure invertability.
29See Appendix A.6 for a derivation of the covariance matrix and the efficient weighting matrix.
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Figure 6: Frequencies of individual field states by region and year for the preferred variant. Scales
vary between figures.

7.1 Crop Rotations

The frequencies of individual field states as defined for the preferred variant are shown in Figure 6.

In the Black and Dark Brown regions, the most popular crop rotation by far alternates between

wheat and canola, while alternating canola with either barley or peas is also common. Continuous

cropping of wheat is by far the most common cropping system in the Brown region, and is a close

second in the Dark Brown region. Continuous cropping of canola is rare in all the regions.

7.2 First Stage Estimates

Expected profits from the first stage estimation are presented in Figure 7. As noted previously,

expected profits for a given crop are not identical between states with the same profit level for that

crop. However, this variation is typically not large. Profits are notably larger and exhibit more

variation between states in the Black soil region than in other regions. In all regions, the Other

category is relatively highly profitable, which is somewhat surprising given that wheat and canola

are more commonly grown. It is also somewhat surprising how many expected profits are negative.

This may indicate the tight margins faced by farmers and the importance of cropping decisions. As

discussed previously, the errors are not indicative of the true uncertainty in the profit estimates, but

are used to obtain a conservative estimate of the error in the discount factor estimation.

Choice probabilities are shown in Figure 8. The most notable observation is that in the Brown
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Figure 7: Estimated expected profits by state and region for the preferred variant, using the Cropping
Alternatives data. Error bars indicate standard errors, calculated from the maximum profit variance
per region (see Section 6).

soil region the ranking of choices is the same in all states except one. Comparing visually to the

ranking of profits in each state, choices in the Brown soil region appear to be unrelated to the relative

profitability of the crops. In contrast, in the Black soil region, there is an obvious correlation between

profitability and choice probability for almost all states. The Dark Brown soil region exhibits a

similar, but less consistent correlation. This may indicate that the model is less well suited to the

Brown soil region, possibly due to the greater variety of crops and the fact that I do not have

consistent data for lentils, which is one of the more popular secondary crops in that region.

Transition probabilities are depicted in Figure 9. The transition matrices are quite sparse,

meaning that many transitions are not observed in the data. This is likely due to the limited size of

the synthesized dataset. Peculiarities such as the guaranteed transition to a low profit state after

growing canola in any state are observed with most variants when using the Cropping Alternatives

data. This phenomenon is much less pronounced with the Cost and Return Benchmarks data due to

the longer time span of the dataset and the greater volatility of actual profits compared to forecast

profits.
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Figure 8: Estimated choice probabilities by state and region for the preferred variant, using the
Cropping Alternatives data. Error bars indicate standard errors.

7.3 Discount Factor

The second stage two-step estimation results for all the variants considered are listed in Table 4.30 I

begin by discussing the results for the preferred variant. Using the Cropping Alternatives forecast

data, the discount factor estimates range from 0.33 for the Dark Brown soil region up to 0.8 for the

Brown soil region. The error term scale parameters are between 15.5 and 24.49, which correspond

to standard deviations of 19.9 and 31.41, respectively. This can be interpreted very loosely as an

indication of how well the model explains the data, in the sense that an implausibly large estimate

would imply a large amount of variation in expected profits that is not explained by the model. The

estimates for the Black soil zone from the two datasets agree within error,31 with point estimates

of 0.65 and 0.598. Unfortunately, the data was incomplete for the other regions, so no comparison

is available. The variation of estimates between regions is rather unexpected, and may indicate

variation in data quality or in how well the model describes the data rather than variation in farmer

preferences. The larger estimate in the Brown soil region as compared to the Black soil region is

consistent with the previous observation of greater correlation between current period expected

profits and choice probabilities for the Black soil region. However, a similar consistency does not

hold for the Dark Brown soil region.

The preferred estimates are robust to minor variations in analysis parameters for some regions

30First step point estimates are very similar to the second step estimates, as shown in Appendix A.7. The second
step acts primarily to reduce error estimates.

31Due to the use of aggregate data for costs, yields, and prices, errors do not reflect the total uncertainty of the
estimates, but are intended as a loose indication of the uncertainty.
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Figure 9: Estimated transition probabilities q(x′ | j, x) for the Black soil region for the preferred
variant for a) the Cropping Alternatives dataset and b) the Cost and Return Benchmarks dataset.
’H’ and ’L’ indicate high and low expected profits, respectively.
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7.3 Discount Factor 7 RESULTS

Data Variant Region
Discount
Factor

Error
Scale Param.

Cropping
Alternatives

Preferred
Black 0.65 (0.09) 24.49 (0.09)

Brown 0.8 (0.1) 15.5 (0.1)

Dark Brown 0.33 (0.04) 24.2 (0.04)

All Crops
Black 0.65 (0.09) 25.14 (0.09)

Brown 0.7 (0.1) 17.1 (0.1)

Dark Brown 0.32 (0.04) 27.73 (0.04)

Top 3
Crops

Black -0.121 (0.005) 16.844 (0.005)

Brown 2.3 (0.2) 11.3 (0.2)

Dark Brown -0.19 (0.02) 14.41 (0.02)

Top 3, All
Black -0.091 (0.003) 20.601 (0.003)

Brown 1.5 (0.1) 15.9 (0.1)

Dark Brown 0.36 (0.03) 17.14 (0.03)

3rd Penalty
Black 0.65 (0.09) 24.2 (0.09)

Brown 0.8 (0.1) 15.3 (0.1)

Dark Brown 0.33 (0.04) 24.45 (0.04)

Durum
Brown 0.27 (0.02) 19.4 (0.02)

Dark Brown 0.38 (0.03) 24.48 (0.03)

C&R
Benchmarks

Preferred Black 0.598 (0.001) 12.975 (0.001)

All Crops Black 0.5997 (0.0005) 13.3713 (0.0005)

Top 3 Crops Black 0.637 (0.005) 22.383 (0.005)

Top 3, All Black 0.69 (0.03) 21.64 (0.03)

3rd Penalty Black 0.5934 (0.0009) 13.5578 (0.0009)

Table 4: Estimation results for all variants considered. Standard errors in parentheses.
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8 CONCLUSION

and are somewhat less robust for others. The ‘All Crops’ variant assigns the uncategorized fields

to the Other category when calculating the choice probabilities. This has virtually no effect on

the estimates for either dataset, which is expected given the dominance of the primary crops. The

‘3rd Penalty’ variant gives an indication of the sensitivity of the estimates to the yield penalties by

applying the yield penalty for the third most common crop rather than the average yield penalties

for barley and peas. Given that this is a small change,32 it is unsurprising that the discount factor

estimates are virtually unaffected.

The ‘Top 3 Crops’ variant uses only data from the three most common crops in the region for

both profits and choice probabilities. This variant produces infeasible estimates for the discount

factor when using the Cropping Alternatives data. This is somewhat surprising, but may be because

the alternatives to the two primary crops are not accurately represented solely by the third most

common choice. The ‘Top 3, All’ variant is similar, but assigns all fields not seeded with wheat

or canola to the Other category. This change does not provide feasible estimates for most regions.

With the Cost and Return Benchmarks data, the effect of these two variants is much smaller, and

estimates remain similar though slightly higher (0.637 and 0.69, respectively, versus 0.598). This

suggests that the lack of robustness with Cropping Alternatives data may be related to the limited

amount of data available, as the Cost & Return Benchmarks data covers almost twice as many

years. Lastly, the Durum variant includes durum wheat, which is a less common type of wheat,

in the Wheat category. This has little effect on the estimate for the Dark Brown soil region, but

dramatically decreases the Brown soil region estimate.

Comparing to previously reported values from the literature, which use very different techniques,

the discount factor estimates from both datasets are somewhat low. The higher estimates here are

in the same range as experimental measures of farmer discounting, which range from 0.7 to 0.78.

Both are much lower than those obtained from estimating Euler equations on income and investment

data. Taken at face value, the estimates here suggest a strong present bias present in farm operators’

cropping decisions, with discounting clearly not matching interest rates. However, the data quality

certainly plays a role in the current estimates. Furthermore, the unexpected variation between soil

regions casts some doubt on the suitability of the model in some regions.

8 Conclusion

Time preferences play a crucial role in a wide range of contexts, and yet they are often overlooked,

in part because they are difficult to measure. Common measurement methods include experimental

setups and estimation of the Euler equation, but both have drawbacks, especially when considering

firm behaviour. Time preferences in agriculture are important for analyzing the implications of

policies regarding food security, sustainability, and environmental stewardship. I evaluate a new

technique for estimating discount factors from dynamic discrete choice models by applying it to crop

rotation decisions of farm operators. I find evidence suggesting a strong present bias, somewhat

32See Table 1.
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8 CONCLUSION

in line with experimental estimates. One caveat to this result is that the lack of granular profit

data poses a challenge. Due to the lack of panel data, I synthesize a pseudo-panel dataset for prices,

yields, and costs from region-based aggregate values and crop break yield penalties from agricultural

science literature. Nevertheless, I demonstrate a novel approach for estimating context-specific

time preferences in agriculture, which is set to become even more promising as richer satellite data

becomes available for crop-level yields.
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A APPENDIX

A Appendix

A.1 Distribution of Maximum of Gumbel Distributed Variables

The cumulative distribution function (CDF) for the Gumbel distributed random variable Z with

location parameter µ and scale parameter α is Pr(Z ≤ z) = e−e−(z−µ)/α
. I have assumed that ν1, ..., νJ

are independent and identically distributed (i.i.d.) Gumbel(−αγ, α).33 I derive the expectation of

the maximum of the choice-specific value function, beginning by writing the log probability that l is

the optimal choice:

lnPr

(
j∗ = argmax

j∈J
{v(j, x) + νj}

)
= ln

∏
j∈J

Pr (v(j, x) + νj ≤ v(j∗, x) + νj∗)

=
∑
j∈J

lnPr (νj ≤ v(j∗, x) + νj∗ − v(j, x))

= −
∑
j∈J

exp

(
−v(j∗, x) + νj∗ − v(j, x) + αγ

α

)

= − exp

(
−v(j∗, x) + νj∗ + αγ

α

)∑
j∈J

exp(v(j, x)/α)

= − exp

(
−v(j∗, x) + νj∗ + αγ

α

)
exp

ln
∑
j∈J

exp(v(j, x)/α)


= − exp

−

v(j∗, x) + vj∗ + αγ − α ln
∑
j∈J

exp(v(j, x)/α)

 /α

 ,

where the first equality follows from the i.i.d. assumption, the third substitutes the cumulative

distribution function, and the rest of the steps are straightforward algebra. Comparing the last line

with the Gumbel cumulative distribution function above, we see that

max
j∈J

{v(j∗, x) + vj∗} ∼ Gumbel

−αγ + α ln
∑
j∈J

exp(v(j, x)/α)), α

 , (23)

which directly implies (10).

A.2 Derivation of Hotz Miller Equation

I begin with the probability of the agent choosing j∗ conditional on the agent knowing the current

draws of νj ∀j ∈ J (i.e. they are in the information set I):
33The mean of a Gumbel distributed variable is µ+ αγ where γ is Euler’s gamma.
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Pr(choose j∗|νj ∈ I ∀j ∈ J ) = Pr(v(j, x) + νj ≤ v(j∗, x) + νj∗) ∀j ∈ J /j∗

=
∏

j∈J /j∗

Pr(v(j, x) + νj ≤ v(j∗, x) + νj∗)

=
∏

j∈J /j∗

Pr(νj ≤ v(j∗, x)− v(j, x) + νj∗)

=
∏

j∈J /j∗

e− exp(−(v(j∗,x)−v(j,x)+νj∗+αγ)/α),

where I employ the i.i.d. assumption in the second equality and the Gumbel CDF in the last. Now,

the unconditional probability of the agent choosing j∗ is given by integrating over the probability

distribution:

Pr(choose j∗) =

∫ ∞

−∞

 ∏
j∈J /j∗

e
− exp

(
−

v(j∗,x)−v(j∗,x)+νj∗+αγ

α

) f(νj∗)dνj∗ .

Define z =
νj∗+αγ

α so that:

Pr(choose j∗) =

∫ ∞

−∞

 ∏
j∈J /j∗

e
− exp

(
− v(j∗,x)−v(j,x)

α
−z

) e−ze− exp(−z)dz

=

∫ ∞

−∞

∏
j∈J

e
− exp

(
− v(j∗,x)−v(j,x)

α
−z

) e−zdz,

=

∫ ∞

−∞

(
e
− exp(−z)

∑
j exp

(
− v(j∗,x)−v(j,x)

α

))
e−zdz,

where in the second equality I include j∗ in the product, noting that exp(−(v(j∗, x)−v(j∗, x))/α−z) =

exp(−z).

Finally, a change of variables u = exp(−z) allows us to evaluate the integral and simplify:

Pr(choosej∗) = −
∫ 0

∞

(
e
−u

∑
j exp

(
− v(j∗,x)−v(j,x)

α

))
du

=

∫ ∞

0

(
e−u

∑
l e

−(v(j∗,x)−v(j,x))/α
)
du

=
−e−u

∑
j e

−(v(j∗,x)−v(j,x))/α∑
j e

−(v(j∗,x)−v(j,x))/α

∣∣∣∞
0

=
1∑

j e
−(v(j∗,x)−v(j,x))/α

=
ev(j

∗,x)/α∑
j e

v(j,x)/α

Taking the ratio of choice probabilities for two different choices, we can perform the Hotz-Miller

inversion to obtain (11).
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A.3 Price, Yield, and Cost Series
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Figure 10: Price, yield, and cost time series from Agriprofit$ Cropping Alternatives. Prices and

costs adjusted to 2014 dollars.
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Figure 11: Price, yield, and cost time series from Agriprofit$ Cost and Return Benchmarks. Prices

and costs adjusted to 2014 dollars.
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A.4 Benchmark Yields

Assuming the average expected yield value yrt(j) represents an unbiased estimate of the population

mean, we can express the population mean as the (group population-) weighted mean of field-state

group averages (N denotes group size):

yrt(j) =
1

Nrt(j)

Nrt(j)∑
i=1

yirt(j)

=
1

Nrt(j)

∑
k

∑
i

yirt(j)|kit=k

=
1

Nrt(j)

∑
k

Nkrt(j) ∗ ȳkrt(j)

=
1

Nrt(j)

∑
k

Nkrt(j) ∗ γk(j) ∗ y∗rt(j)

= y∗rt(j) ∗
1

Nrt(j)

∑
k

Nkrt(j) ∗ γk(j)

where Nrt(j) =
∑

k Nkrt(j), ȳkrt(j) is the average yield of crop j by field state, region, and year, and

y∗rt(j) = y∗(j, yrt(j), Nkrt(j)) is the benchmark yield.

A.5 Model Variants

The classifications used for each model variant are described in Table 5.
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Variant Region Model
Crop Inventory /

Yield Penalty

Cropping

Alternatives

C&R

Benchmarks

Preferred
Black,

Brown,

Dark Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Other
Barley,

Peas

Feed Barley,

Malt Barley,

Field Peas

Feed Barley,

Malt Barley,

Field Peas

All Crops
Black,

Brown,

Dark Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Other All Other Crops

Feed Barley,

Malt Barley,

Field Peas

Feed Barley,

Malt Barley,

Field Peas

Top 3 Crops

Black,

Dark Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Barley Barley
Feed Barley,

Malt Barley

Feed Barley,

Malt Barley

Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Peas Peas Field Peas Field Peas

Top 3, All

Black,

Dark Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Barley All Other Crops
Feed Barley,

Malt Barley

Feed Barley,

Malt Barley

Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Peas All Other Crops Field Peas Field Peas

3rd Penalty

Black,

Dark Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Other

Barley,

Peas

/ Barley

Feed Barley,

Malt Barley,

Field Peas

Feed Barley,

Malt Barley,

Field Peas

Brown

Wheat Spring Wheat Spring Wheat Spring Wheat

Canola Canola
Argentine

HT Canola

Liberty Link Canola,

Roundup Ready Canola

Other

Barley,

Peas

/ Peas

Feed Barley,

Malt Barley,

Field Peas

Feed Barley,

Malt Barley,

Field Peas

Durum
Brown,

Dark Brown

Wheat Spring Wheat
Spring Wheat

Durum Wheat

Canola Canola
Argentine

HT Canola

Other
Barley,

Peas

Feed Barley,

Malt Barley,

Field Peas

Table 5: Variants of crop type classifications and their correspondences between model and datasets.

Italics highlight variations from the preferred variants. Values are averaged to aggregate data from

multiple crops.
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A.6 Delta Method Derivation

The second stage error estimate and efficient weighting matrix are derived as follows. The first order

condition for (22) is:

0 = ∇θε(θ̂, η̂)Wε(θ̂, η̂).

A Taylor expansion of the last ε(θ̂, η̂) term around η0, followed by a second expansion of ε(θ̂, η0)

around θ0 gives:

0 = ∇θε(θ̂, η̂)W
[
ε(θ̂, η0) +∇ηε(θ̂, η0)(η̂ − η0) +O(∥η̂ − η0∥2)

]
= ∇θε(θ̂, η̂)W

[
ε(θ0, η0) +∇θε(θ0, η0)(θ̂ − θ0) +∇ηε(θ̂, η0)(η̂ − η0) +O(∥η̂ − η0∥2) +O(∥θ̂ − θ0∥2)

]
.

Noting that ε(θ0, η0) = 0 by definition and adding and subtracting ∇ηε(θ0, η0)(η̂ − η0), we have:

0 = ∇θε(θ0, η0)W
[
∇θε(θ0, η0)(θ̂ − θ0) +∇ηε(θ0, η0)(η̂ − η0)

]
+O(E),

where

E = max{∥η̂−η0∥2, ∥θ̂−θ0∥2, ∥∇θε(θ0, η0)−∇θε(θ̂, η̂)∥∥θ̂−θ0∥, ∥∇ηε(θ0, η0)−∇ηε(θ̂, η0)∥∥η̂−η0∥}

Assuming ε is twice differentiable, O(E) = O(∥η̂ − η0∥2). Additionally, assuming that the first

stage estimates are asymptotically normal with covariance matrix Ω:

√
n(η̂ − η0) → N(0,Ω),

we have that
√
nO(E) = Op(1/

√
n) = op(1). Rearranging, we have:

√
n(θ̂ − θ0) =

(
∇θε0W∇θε

′
0

)−1 [∇θε0W∇ηε0
√
n(η̂ − η0)

]
+ op(1)

where ∇ηε0 is short-hand for ∇ηε(θ0, η0) and similarly for ∇θε0. Hence,

√
n(θ̂ − θ0) → N(0,Σ),

where

Σ =
(
∇θε0W∇θε

′
0

)−1 [∇θε0W∇ηε0Ω∇ηε
′
0W∇θε

′
0

] (
∇θε0W∇θε

′
0

)−1

The efficient weight matrix is then

W =
(
∇ηε0Ω∇ηε

′
0

)−1
.
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A.7 First Step Estimates

Data Variant Region Discount Factor
Error

Scale Parameter

Step 1 Step 2 Step 1 Step 2

Cropping

Alternatives

Preferred

Black 0.6 (0.5) 0.65 (0.09) 25 (14) 24.49 (0.09)

Brown 0.8 (0.6) 0.8 (0.1) 19 (7) 15.5 (0.1)

Dark Brown 0.3 (0.2) 0.33 (0.04) 25 (11) 24.2 (0.04)

All Crops

Black 0.6 (0.5) 0.65 (0.09) 25 (14) 25.14 (0.09)

Brown 0.7 (0.5) 0.7 (0.1) 21 (6) 17.1 (0.1)

Dark Brown 0.3 (0.3) 0.32 (0.04) 28 (11) 27.73 (0.04)

Top 3

Crops

Black -0.1 (0.5) -0.121 (0.005) 19 (13) 16.844 (0.005)

Brown 2 (1) 2.3 (0.2) 14 (9) 11.3 (0.2)

Dark Brown -0.2 (0.6) -0.19 (0.02) 13 (8) 14.41 (0.02)

Top 3, All

Black -0.1 (0.5) -0.091 (0.003) 23 (14) 20.601 (0.003)

Brown 2 (1) 1.5 (0.1) 16 (9) 15.9 (0.1)

Dark Brown 0.4 (0.5) 0.36 (0.03) 17 (8) 17.14 (0.03)

3rd Penalty

Black 0.7 (0.5) 0.65 (0.09) 24 (14) 24.2 (0.09)

Brown 0.8 (0.6) 0.8 (0.1) 19 (7) 15.3 (0.1)

Dark Brown 0.3 (0.2) 0.33 (0.04) 25 (11) 24.45 (0.04)

Durum
Brown 0.3 (0.2) 0.27 (0.02) 23 (6) 19.4 (0.02)

Dark Brown 0.4 (0.2) 0.38 (0.03) 26 (11) 24.48 (0.03)

C&R

Benchmarks

Preferred Black 0.6 (0.3) 0.598 (0.001) 14 (25) 12.975 (0.001)

All Crops Black 0.6 (0.3) 0.5997 (0.0005) 15 (27) 13.3713 (0.0005)

Top 3 Crops Black 0.6 (0.5) 0.637 (0.005) 23 (28) 22.383 (0.005)

Top 3, All Black 0.7 (0.5) 0.69 (0.03) 27 (31) 21.64 (0.03)

3rd Penalty Black 0.6 (0.3) 0.5934 (0.0009) 15 (25) 13.5578 (0.0009)

Table 6: First and second step estimation results for all variants considered. Standard errors in

parentheses.
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